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SUMMARY. 
In this paper we present a general expression describing the peak 

broadening effect on molecular weight averages measured during the elutlon 
of a polymer in GPC. This expression is valid for nonlinear column 
calibration and nonuniform Gaussian spreading across the chromatogram. 
Comparison is made with analytical relationships derived by Yau, Marais, 
Hamielec and Netopillk. The methodology developed as an extension of the 
Pierce and Armonas method is applied to a model system and to elution data 
of dextrans. 

INTRODUCT ION. 
It is well-known that peak broadening in GPC is adequately described 

by Tung's integral equation (I). Originally intended for chromatograms 
from a concentration detector, this equation may be generalized to 
chromatograms from a molecular weight detector. With the fast growing 
application of the LALLS (Low Angle Laser Light Scattering) and 
vlscoslmetric detection techniques several attempts have been made to 
solve analytically the generalized Tung's equation (2-7). In fact all 
these solutions represent relationships between the average molecular 
weight of the polymer species eluted at elution volume v, denoted here as 
M (v), and the column calibration molecular weight M(v) (the subscript 

specifies the kind of average). The function M(v) is usually determined 
by measuring the peak positions of monodisperse standards. Contrary to 
M (v), the calibration function M(v) is not affected by peak broadening. 

The first reported relationship between M (v) and M(v) is due to Yau 
et al. (2). Though restricted to linear eolumn~calibration and uniform 
Gaussian spreading across the chromatogram their expression is exact. 
Hamielec et al. (4-7) have generalized Yau's result. They apply the above 
restrictions only locally in the chromatogram i.e. in a very small elutlon 
range. As we shall see their expression is approxlmative. Other general 
relationships have been proposed by Marais et al. (3). However, their 
method has not come in practice. 

On the same level of generality we deduce from the Pierce and Armonas 
expressions (8) a general relationship between M (v) and M(v). The results 
are expressed in terms of the first and second d~rlvatlves of the 
chromatogram F(v) and permit an explicit evaluation of the spreading 
factor h(v). The latter is shown by a graphical procedure. Moreover 
Hamielec's analytical solution for the corrected chromatogram (5,7) is 
shown to be identical to an earlier version of this solution derived by 
Pierce and Armonas (8). 
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THEORETICAL. 
Let us first postulate the two integral equations describing the peak 

broadening effect on the different kind of chromatograms. The first 
equation, introduced by Tung (I), relates the experimental UV or RI 
chromatogram F(v) to W(y), the chromatogram corrected for broadening 

+~ 

F(v) = f G(v-y) W(y) dy (I) 

Here G(v-y) represents the spreading function of the polymer species 
eluted at elution volume v with elution volume variable y. The other 
integral equation, describing the chromatogram obtained from the molecular 
weight detector, reads 

+~ 

Ma(v) a F(v) = f G(v-y) W(y) M(y) a dy (2) 

In eq.(2) M (v) stands for the molecular weight average with a specifying 
the type of average 

MI(V) ~ Mw(V) , M_I(V) ~ Mn(V) , Ma,(V) = Mvis(v) 

(a' is the Mark-Houwink coefficient) 

The l.h.s, of eq.(2) is proportional to the ,detector response, i.e. 
(v) F(v) for the LALLS detector and M . (v) a F(v) for the connected 

W VlS . . 
viscosimeter. As M(y) denotes the true molecular wezght callbration 
function, W(y)M(y) e is proportional to the height of the detector 
chromatogram corrected for peak broadening. 

In addition to eqs.(1) and (2) we shall make two assumptions, which 
are valid to a high degree in a small range around v. First we linearize 
in M(y) by writing 

y : C,(V) - e2(v) in M(y) (3) 

Furthermore we restrict ourselves to Gaussian spreading 

{h(v)}~ 
G(v-y) : .--~-- exp {-h(v)(v-y)'} 

with a spreading factor h(v). As a result eq.(1) becomes 

lh(v)} ~ +| F(v) = ---C--- # W(y) exp{-h(v)(v-Y)~ldY 

Before rewriting also eq.(2) we transform eq.(3) to 

(4) 

(5) 

M(y) : M(v) exp{-(y-v)/c2(v) } (6) 

Insertion of eqs.(4) and (6) into eq.(2) leads to 

Ma(v) a F(v) = M(v) a { }~ exp {4h(v)c2(v)a } 
§  

f W(y)expl-h(v)(v- a )2 2h(v)c~(v) y }dy 

= I, -I, a' 

(7) 

Eq.(7) is a convenient starting point for deriving the various expressions 
found in literature as well as the expression obtained in this paper. 
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Let us assume that we are allowed to make the approximation 
h(v-a/(2h(v)c2(v))) ~ h(v). In that case eq.(7) reduces with the use of 
eq.(5) to 

Ma(v)a F(v) = M(v) a F(v - 2h(v~c2(v)) exP{4h(v)c2(v) 2 } (8) 

a = I, -I, a' 

This reduction has been shown by Yau et al.(2) assuming h and c 2 to be 
constant in the elution range of the chromatogram. Then eq.(8) is exact. 
The more general case, in which h and c2 are assumed to be locally 
constant has been treated by Hamielec et al. (5,7) who arrive at eq.(8). 
However, it must be noted that eq.(8) remains approximative unless 
a/(2h(v)c2(v)) is a very small quantity. 

Without loss of generality Marais et al. (3) solve the integral in 
eq.(7) by using a Taylor expansion followed by an integration of each term 
of the series. Their result is an expansion in powers of I/(2h(v)c2(v)2). 
However, use of this open expression is restricted as the corrected 
chromatogram must be known beforehand. 

In this treatment we solve eq.(7) by approximating W(y) with the use 
of the method of Pierce and Armonas (8). Let us approximate F(v) in a 
small range around v by the function F(y,v) as follows 

F(y,v) = exp[a(v) - b(v)(y-v) - c(v)(y-v) 2} (9) 

with a(v)=ln F(v), b(v)= -{din F(y)/dY}v and c(v)= -~{d21n F(y)/dy2} 
of the Fourier transform Then eq.(5) can be solved for W(y,v) by means . v 

technique (8) resulting in 

h(v) }~ F(V) exPl4--~l'b2(v)1 W(y,v) = {h(v)-c(v) 
h(v)c(v) (y - v b(v) ) 

exp { h(v)-c(v) + ~ 2} (10) 

W(y,v) is an approximation of the corrected chromatogram around v. If W(y) 
is replaced by W(y,v) in eq.(7), the integration can be. performed 
analytically. It yields 

a a 2 ~ , b ( v ) a  
(v) a = M(v) a exP{4h(v)C2(v)2 } exP~2h(v)c2(v) 

a2c(v) 
- 4h(v)2c~(v)2 } (11a) 

or in a more compact form 

ex~ i (h(v)-c(v))a b(v) (v) = M(v) + } (11b) 
e P 14h(v)'202 (V) 2 2h(V)C2(V) 

a = I, -I, a' 

So we have a simple closed expression relating the detected molecular 
weight average to the true molecular weight. The required properties of 
the chromatogram are the local first and second derivatives. An additional 
remark on the derivation of eqs.(11) has to be made. Looking at eq.(2) it 
must be realized that the approximations for W(y) and M(y) are rather good 
in a small range around v, but loose their validity as y is farther from 
v. On the other hand the function G(v-y) goes fast to zero for increasing 
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values of (v-y). Thus the integral i n  eq.(2) is almost completely 
determined by the properties of W(y) and M(y) around v. 

Of interest is that eq.(11) reduces to known results. At small values 
of ~/(2h(v)c2(v)) we may substitute y=v-a/(2h(v)c2(v)) into eq.(9). Then 
we obtain the identity 

F(v - 
2h(v)cz(v) ) r b(v)a c(v)~2 } (12) 
F(v) = exPt2h(-~2(v) 4h(v)2c2(v) 2 

We see that eq.(11a) becomes identical to eq.(8). Another case, where the 
chromatogram is Gausslan-shaped has been studied by Netopilik (9). In our 
terms it implies the equality b(v) = 2c(v-y o) where Yo is the peak 
position and 2c the reciprocal variance of the Gaussian chromatogram. 
Under these specifications and with eq.(6) eq.(11b) can be rearranged to 

](h(v) - c)a (h(v)-c)(V-Yo) 
a(v) = MCy O) exp ,4h(v)2c=(v)2 + h(v)c=(v) } (13) 

a = I, -I, a' 

If h and c2 are considered to be independent of v in eq.(13) the previous 
analytical result (9) is found back easily. 

Let us consider now two applications of eq.(11). Firstly, the 
resolution factor h(v) can be solved if the other parameters are known. 
This point will be illustrated in the following sections. Secondly, 
eq.(11) will be useful for the calculation of the molecular weight 
averages of the polymer as a whole. For instance with the LALLS technique 
one measures M (v). For that situation eq.(11b) is conveniently rewritten 

W 
as 

= ~ b(v) (I-~) 
Ma(v) Mw(V) ~ M(v)(1-~)exp t2h~=-~ } (14) 

= -I , a' 

Thus expressions for M (v) and M _ (v) follow from eq.(14) by taking 
n VIS . 

respectively ==-I and ==a'. The flnal step zs the calculatzon of the 
molecular weight averages according to 

+~ 

~ I  w(V) F ( v ) d v  

= [ f F(v) dr]-1 (15) 
n -| M (v )  

n 

Mvis = [ f Mvis(V) a' F(V) dv] I/a' 

where the chromatogram has been normalized for the area under the curve. 
Finally we briefly discuss the approximative analytical solution of 

eq.(4) for the corrected chromatogram W(v). Solutions of this kind have 
been reported by Pierce and Armonas (8) and by Hamielec et al. (5). The 
former solution is found by taking the limit y § v in eq.(10) 

b ( v )  2 
| h(v) }~ F(v) exp{ } (16) 

W(V) = ~h-(v--~-c(v) 4(h(v)-c(v)) 

Let us rewrite this expression in Hamielec's notation (5) with 
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I 
~ = 2h(v) 

~(v) : v - a(v):b(v) 

~(v) 2 : o(v) 2 - 20(v) * c(v) 

It gives 
W(v) : O(v) F(v) exp {- (v-~(v))'} 

~(v) 2~(v) ~ 
(17) 

Eq.(17) has been derived by Hamlelec along another route but is in fact 
the same as eq.(16). 

RESULTS AND DISCUSSION. 
Model calculation. 

In order to check the properties of eq.(11) we shall choose the 
following test functions 

"20~" " To (v-53)" + ~-~ (v-53)'} exp{- (v-53)2} (18) 

I 
M(v): 66171 exp {- # (v-53)} (19) 

Both functions are graphically shown in Figure I. Notice that W(v) is a 
skewed Gaussian chromatogram at infinite resolution (h=| whereas for 
M(v) linear column calibration is assumed (c2:4 ml). For finite and 
constant h we find the corresponding chromatogram F(v) by applying eq.(5) 

F(v) = 3 I 3h ~)I/2{I 1 12 ) 
(3+20h) + 3+20---- ~ + (3+20h--------T2(v-53 

1 f 20h 12(v_53)2 + I f 20h l'(v_53),~; 
+ I--O "3+20h" 5-O "3+20h" 

( 3h~ 
exp {- 3+--~) (v-53) 2 } (20) 

This chromatogram is represented in Fig.1 for h=0.3 m1-2. Since h is 
constant across the chromatogram, eq.(8) provides an exact expression for 
the molecular weight average obtained by LALLS 

I 
F(v- ~ h) 1 

Mw(V) = M(v) (F(v) exp {6--~ } (21) 

On the other hand t h i s  f unc t i on  i s  given by eq.(11a) 

(b(v)  c (v)  } exp I 
%(v) = M(v) exp, 8h 64h 2 {~4-6 } (22) 

whereas analytical expressions for b(v) and c(v) are available from 
eq.(20). In Fig. 1 the points corresponding to eq.(22) are seen to be in 
perfect agreement with the exact result according to eq.(21 ). 
Evldently the resolution factor h(v) may be solved from eq.(11b). However, 
if experimental noise is generated a graphical representation is 
recommended. In Fig.2 a way of plotting has been chosen such that curves 
are obtained with a slope I/h(v) according to eq.(11b). This curve may be 
useful if h is constant or at least locally constant. From Fig.2 we 
estimate h=0.2998 m1-2 being nearly the exact value 0.3 m1-2. 
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In Table I various values of M and M of the model sample are 
.w 

compared. In the first column are gzven thenexact values calculated with 
eqs.(18) and (19). The estimates in the second column of Table I have been 
made by applying eqs.(14) and (15). They turn out to be accurate. In the 
third column of Table I small errors in the values occur. These figures 
have been found by using eqs.(16) and (19). Thus a small inaccuracy has 
been introduced by the analytical approximation of W(v). 

Table I 

exact eq.(15) approximative 

67,450 67,450 66,580 
~-w 50,280 50,290 50,760 
n 

Number-average and weight-average molecular weights of the model sample. 

5OO 
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Fig.2 
Graphical evaluation of 
h(v) for the model 
according to eqs.(18) 
to (21). 
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Plot of Y versus X+50y o 
for eight different dextran 
samples (Yo being the 
peak elution volume). From 
the left to the right: 
T70-II-I(1); T150-921(2); 
T70-II-4(3); T70-1730(4); 
T70-II-7(5); T40-1600(6); 
FDR-7314(7); TI0-9846(8). 
X and Y have the same 
meaning as in figure 2. 
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Table 2. 

Code 
w n w n 

xl 0 -3 xl 0 -3 xl 0 -3 xl 0 -3 
(REFERENCE) eq.(15) eq.(15) ,h=| 

h 
n 

m1-2 xl 0 -3 
(corrected) 

TI0-3205 9.3 5.7 10.4 7.9 0.367 3.9 
TI0-9846 10.5 6.4 10.1 8.6 0.394 6.0 

T20-7968 22.3 15.0 20.8 19.0 0.348 13.9 
T20-5382 21 . 6 1 6.7 22.2 20.6 O. 348 1 2. I 

T40-9086 42.4 28.4 42.1 34.1 0.358 20.1 
T40-2540 44.4 28.9 44.7 38.1 0.319 26.6 
T40-1600 35.9 24.1 38.3 29.9 0.300 21.3 

T70-693 69.5 39.5 74.2 54.7 0.248 39.7 
T70-1730 70.0 42.5 76.4 62.1 0.314 42.8 

T110-5404 101 62.0 96.5 79.1 0.272 52.9 
T110-9071 106 76.0 104 90.4 0.299 77.3 

TI 50-921 154 86 1 57 1 21 O. 285 85 . 8 

T250-8374 240 121 245 159 0.343 101 

T500-21 91 7 465 192 462 223 0. 256 1 71 

TTO-II-4 98 84 98.4 94.7 0.305 86.7 
TTO-II-7 50.8 43.6 48.1 45.0 0.315 41.1 
T70-II-I 158 135 152 148 0.327 155 
FDR-7314 21.3 18.9 21.0 20.5 0.327 16.5 

Molecular weight data of dextrans in 0. I M KNO 3 aqueous solution. 
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Real System. 
Experimental data were obtained from a recent study on the elution of 

dextrans in aqueous GPC with a LALLS detector (10). Sufficient salt (0,1M 
KNO 3) was added to enhance a pure size exclusion mechanism. 
The-functlons b(v) and c(v) defined by eq.(9) were determined as proposed 
by Pierce and Armonas (8). An estimation o~ c2(v) was made by approxi- 
mating M (v) -M(v ) at the peak of each RI chromatogram and by plotting 
in M (v)WvsPv forPthe different dextran samples. This approximation 
foll~wsPfrom aPreductlon of eq.(11b) with e=1, b(v)=O and sufficiently 
small values of the first term between braces. In this case the latter was 
about 0.03, making an iteratlve approach unnecessary. In Flg. 3 plots are 
shown similar to that In Fig.2, however, restricted to a small range 
around the top of the chromatogram. They were obtained by a quadratic 
least squares approximation. The slopes of the curves vary only marginally 
for the different samples reflecting the weak dependence of h on v. 
Estimates of h are found in Table 2. They agree reasonably with estimates 
reeently obtained (10) from a numerical solution of eqs.(1) and (2). 
Further inspection of Table 2 reveals that the values of M calculated 

w 
according to eq.(15) are in agreement with the reference values. Notice 
that no prior knowledge of h is required for the calculation since 
% (~) is available from the measurement. In column 5, Tabie 2, values of 

M are mentioned which have been calculated according to eq.(15) but 
taking M (v)=M (v) or h=| These values turn out to be too large. 

w 
Correcte~ values of M obtained for finite h are found in the last column 

n 
of Table 2. 
The correction implies an improvement apart from a few exceptions. In the 
latter cases the solution for M (v) was not stable. Obviously it can be 
circumvented by taking the othe~ calculation pathway via W(v) and M(v) as 
shown in the model calculation. 

CONCLUSIONS. 
With eq.(11) we have the disposal of a simple closed expression 

accounting for imperfect resolution in GPC involvlng a molecular weight 
detector. Compared to other similar analytical relationships in literature 
it has the advantage of combining a general validity to an easy 
determination of the resolution function h(v). 
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